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| | " INFINITE.SYSTEMS OF LINEAR 'E‘QUA’I-T’I‘ONS@

s IN AN INFINITE NUMBER OF UNKNOWNS
) :: .
: : ;
| . :
e A.  [¥TRODUCTION ‘ :
| | I
:“ The solution of & large class of.physical problems, including diffraction of elec~ f
tromagnetic waves by pericdic structures, or combinations. of simple scatterers, and j ik
resonance phenomena in enclosed spaces;lead to infinife gysteins of linéar equations {.
in sn infinité number of unkrcwis. Coriventional methods of solving finite sets of :f
. linear equatiofis .mst be exteaded with cdre to the infinité systém. This report is ;
& i a brief summary of available information on. the solution of suck infinite systems,
-3 " with emphasis on the importarnt distinctions between the finite ard irifinite cases.
t B. EXTEMSION OF CRAMER'S RULE TO INFINITE SYSTEMS
<] : CRAMER'S KULE
3 .
‘{—; ' Consider the set of equations: .
L ‘ _ :
¥ n
s i . ’
;’; >k4=1a'ik xk = bi P (i = 1’2’3’0- u:--’n)' (1)
1] .‘ -
?: ; Let the determinant of the array a;, be denoted by A, where
g
l'\ g{ a a a ° .. o a
\ I J 11 12 13 in
¥
rl a21 a2 2’ aza T a “2n
i
4 = . ; o e es 2),
;ﬁ% &, %1 %2 % Can ‘ (2)
%
é“‘! * . ® ° .. . * a N::.
.':o j 04 I &
) Y
‘;)f’."’ A. N , qnl an2 ans . . o ann, ’N , 5
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‘ﬁ 1. AlR) oy B var ety tha BER ; %;
: ¢ ~ and let A, * represent the determinant. of the array formed by repldcing the &*" columm -k
f ' of (2) by the set by, by, -+ -+, b;. If the determinant A, is nonzero, Cramer’s rule . -
: ) . =
3 states that- the unknowns xp- are given by S - "
o i : 5
' k : I
, L

s

% ‘:&:“ . ' ' . 5 ' (3)

RTINS

This is the vfiique solntion to system (I) if A; is nonzero; if 4, is'zerc, the system
of equations may possess up to n independent sclutions of no solution depending upon -
the values of b;, and a modified apprcach must be used.

<

For an infinite system of equations the' concept of determinant.is open to defi-

N}

o . , i N - ) . =Y - o . . S . o: N . v . . .
nition, but an extension of Crameér’s rule to such a system is- suggested, Consider

ok e

the infinite system

o,

S AT

@ % = b, . (i =1,2,3, -y, . (4)

T

=M g

21

“li "% & 3

If this infinité array is consideéred as the limit of a sequence of finite square

arrays, the nth array in the segusnce being given by (1), then l1gical extension of

Cramer’s rule as epplied to finité systems. would suggest that theé solutior be given
by the limit (when it exists )
k
A( )

n

<

()

xy = lim

n ®

Such an extension of Cramer’s rule is not generally valid, as several exampleés will

show. Consider the infinite system of equations:

aij *; i » (i =1,2.3, ~ ¢ ¢) o

i
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By inspection it-is- seen' that

A, =1 for all n, . E
. . N } RS

5 ¥ . B Y |

A,S.) =9 (-1) , where ¥k ¥ n, and ) B G

(n.) _ C..n . 3

A, = -1 . . : i

_ _ : Pk

Therefore, by (Sj, - . b
(k) ¢ RS

. . k 5 . = B

zy, = Lim = 2(-1) g (GO o I

me o g o R
Upon..substitution of the *‘solution’’ into the équations of ‘(6); however, the row c
series do not converge. The extension of Cramer’s. rule does not vield a verifiablé i
solution in this case. Another system for which the extension of Cramér’ s mulé is |
in doubt is given by ) ) *
. ) 1%

> d,. %, =b, (1 1,2,3, *°-°) (8) SR [

C Gy WY i -

where dif = 0, except a; ; =1, @ ;., = 1 and by = 0.
By inspection
A, =1, . B

Alk)= g
. .

Therefore, by (5),

(k)
bn

% = Lin
n-
An

=0. (9)

By.inspection, -however, an infinite number of solutions to system (8) exist.of the
form z, = ¢. In this instance. the extension of Cramer’s rule gives a verifiable

solution, but it is not a unique solution.

As the.preceding examples illustrate, application of the extended form of Cramer’s

rule to ihfinite systems must be made with care.
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f?% AppéﬁdiX‘Ifdevelbps.sufficient»conditionSufor the- application of‘Cramer”s rule N
:%@ Z ﬁo*iﬁfiﬁiﬁé‘sysﬁéms-df equations. It must be emphasizedithat theseconditions need:
z;% not be satisfied for Cramer’s rule to apply; they are sufficient but not necessary .
h?} conditions. Two types of conditions will be noted. The first set of>cénditi6n3'are
1@1 those sufficient for the infinite set of linear equatfons to have a unique soclution .
7334 given by the extended Cramer’s rule. They are: s
i ‘i 1. The determinant of the array mst be ‘‘normal’’
?% 2. The Iimit of the Qh rust be nonzero
L 3. The sequence by must be bounded. )
’°§ . The determinant of an a}ray is said to be *‘normal®’ if the double series %f?Kaij - sij) : %_ {
1 converges absolutely, where 8  desotes the Kronecker delta. The second set of corni- : ;
o ) ditions, are less stringent, and are sufficient for vhe infinite set of equations. to 1 ¥
QQ possess .a solution (not necessarlly unique) given by the extended form of Craver’s i
k rule. . These are: (k) _ (k) - . ';
' 1. The ratio converges, uniformly with k, to a limit———for k = 1,2,3,°¢¢ % ?
S : © 4
; 2. Ani# 0, for n sufficiently large i I
gi © , v }é! ._:
1. 3. = dijl'COnvErges for i = 1,2,0 o g ;?
: 4. The sequence b, -must be bounded. B ¢
« . * 5
1 The. second .set of conditions essentially substitutes the weaker ¢ondition of absolute YK |
. surtmability of the rows for the stronger condition that the determinant of the array ) i_“ H
%z i be normal. In many cases arising from analysis of physjcal problems the existence f’_:}}
' | of .a unigiie solution may be implied by other &onsideratiéns, and the weaker set of i ;é
:” :?_ conditions used to justify extension of Cramer’s rule to the system. Note that (8) é ;
' is an example of a system satisfying the weaker set.of conditions for the application _ i_
; ? . of Cramer’s rule, and the sclution given by this rule is valid, but not unique. o éi-
I Since the system does not satisfy the stronger conditions (its determinafit is not B« Mlé

St ez >

normal) one would not expect this solution to be unique.

T el

The extension of Cramer’s rule to infinite systems of equations is not a satis-

l:-?"v-v»———"ﬁ?""“frP‘

factory general method of solution, therefore, since

|
i

ey @mﬂ' i M
. L.
R 2 i
B A "

1. It does not yield the general solution

2. Necessary and sufficient conditions for application of th1s rule are not

A - known o 15
s ' . . .. . . e . . i,
<) 3. Sufficient conditions. which may be stipulated are difficult to test in an -
actual system, since the absolute convergence of a double ser1es'must be c B
: ascertained . i
A . "t - S
e 4 o et
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" It ast be émphasized that for special systems of équations, ,whére the sufficient.
. conditions for applicat:i.on‘ of Cramer’s rule are obviously sat;:isfi‘ed', this rule givés
a rapid method of obtaining a solution, and is quite useful.. -
C. THE METHOD OF SCHMIDT
“The most satisfactéry general technique for sélvihg:infinite ”s-ystems .of linear
equitions has been develéped by E. Schmidt. The text of an éxeellént }')apéf2 on this
method by Maxime Bochér and Louis Brand is reproduced in full in Appendix II, In
brief, the important charactéristiés of Schimidt’ s fiethod are as follows:
1. Thé matrix of the infinite systém of &quations is multiplied by its complex
" conjugaté transpose to form a new array ’
2. The solution of thé system is given by the limit.of the ratiss of deter-
) . minants, formed from subarrays of inéreasing order, much as in Cramer’é
nethod
3, If a unidquée sélution of finite norm eéxists, this.method yields it; if ore
v " than ene' solution exists, this.methed gives the one of minimum norm and can
~ be used to obtain the general.soldtion )
Z 4. Necessary and sufficient conditions for the existence of & solution of

.

finite nérm arée givén. _
It may be notéd that the solutions of physical problems which are of intérest afe
those of minimim norm, éxactly those given by Schmidt’s method.

D. CONCEPT OF INVERSE APPLIED TO INFINITE SYSTEMS
The infinite system of linear eqs. (4) may be written in matrix form as

AX = B,

where A 1s the infinite matrix of coefficients dij’ X is.a ¢olinm vector in the iin-
kriovns %y and B is the coluim vector of constants b;. In analcgy with a finite
system, it may be asked if A has an inverse matrix C sich that
AC=CA=1.
“Theri the soliition would be given: by:
"X=CB

~ LONFIDENTIAL
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Infinite- mtrices, howsver, do not génerally posséss unidue. inversess An infinite
“matri% hay possess an infifite nuiber of right or left.inverses. Ff-an infinite
"mAtrix possésses both a right and Ieft invérse théy are equal and. unique. To illus-
traté a fiatrix which possésses an infinite number of righ¢ inversed, comsider the
-i'nﬁnite—érra'y A= ( (¢;; )) vhere ¢;;= 0, except &
~matrix C = ((éfij Y}, whére C1j is arbitrary, ¢

is a right inversé of 4. That is

g 1. By inspéétion; the

oy

i8y,i - 1s @nd all other ¢;; afe Zérd,

£C-=']

for an infinité number of matrices C difféfing By elemeénts:in the -fifst:row. No
1éft-inverse eéxisty for A, however, sinés- the prodact. CA has all. .séros in 1ts- First

¢olumn for any matiix C.

Appendix TIT éutlines a modification of Sehmidt®s inéthod. which develops suffi-

- ¢ient- conditions: for armatiix B to éxist such that, if
AX-= ¢,
the solution véctor is given by

“where A and B aré infinite square matrices, and X and ¢ are infinite eolum vectors.

6

LONFIDENTIAL

W A

-




i

Al

LY

C T

DS

oo -2

e,

f

ST RO
;m‘.-uﬂm«mwg;\a”
—

Aaso i

1.

whéie the ey
ai arrdy is described as ‘‘normal’’. Furthermore, Iet‘Aj=§§

® ©
pID

&efiﬁing.Aj converges since the double series

APPENDIX |
NORUAL ARRAYS

‘Corisider the following infinite square array:

Ttasy dyo dyg G914 .
Qoq I+a22 Qsg Aoy o
daqi ass l¥agg &34 *
44 ) g3 Ta,, o

-
°
.
.
.

i)

. ; - . w
are complex quantities, and the double séries =

ot

t=1

| a;; | converges.

2

@,
>

J

_ijlg ylhere

J=1

(D

| LY | converges. Such

the series

w0
=z A j converges

for the same reasén. It then follows that the seduence of_products I, —"—ﬁ (1+A.]._)
1

J=

¢onverges to a limit Il Consider now the determinants of the finite square subarrays

% e
1+a11> 40 . L o Gqp
L Q21 Itay, °r e e Uan
b
lx:}‘ An = o © ° ° ° o
AL
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e
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These determinants are sums of. certain products. of the a; i with proper ‘sign attached.

‘The. same products. occur also, in absolute value, in the development of Hn. “.Further-

more, .An +p contains all the terms.of. A, and the other terms of A hppear, in. ab-

solute value, in Hn.*'P~ ~1T,. Therefore, it follows that IA I'< __. IA ntp A IS Hn+p_nn’

and

Lina, =4 N - .« ’ 3)

-exists, where IA[ <II. A normal array may be. said. to. possess an mf:mlte determinant

A considered as a limit. of determinants of finite square subarrays, and ‘this limit

determinant is bounded by Tl.

The. det.ermmant Ac of an arrdy. formed by reglacmg the btk column of a. ‘normal
array with .a bounded sequence also exists, and A* < MII, where M is theé upper-bound

to the sequence.
2.° LAPLACE'S DEVELOPMENT OF MORMAL AKRAYS

The. analogue of.Laplace’s. dev...opment.of a finite determinant for an infinite
1alogu P P

system will' now be established. A prélininary definition -is required.

DEFINITION: By the minor (k) of the det:rmmanc A of a normal matrix (array)
A we shall mean. the result.:mg determinant. A of the matrix. formed by subst1tut1ng
for the kt? columm of A the sequence b =9, i As 'in the finite case, the minor (k)
th

does not change. 2f zll the elements in the i*® row are replaced by zeros except the

elemént in the k° column.,

THEOREM i: If A is a normal matrix, and c¢; is a bounded sequence, then

m i
(a) s [(k)l' converges, and its value does not exceed II
iz

E o i
(b) & =5 (E) c;, and the series on the right converges zbsolutely:
=1

i . o !
PROOF: " Since the convergence of s l(-k)l' imiplies the convergence of < (k)e,,

i=1 i=1
we first show t.hat. s I(k) I converges. It suffices to show that the partial sums
i=1
- i
‘s I,(k) |- are bounded for all n.
i=1 ’ 1
8 -
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-Let,A. be the infinite determinant of the matrix forimed by substituting for the

kth column of A the sequence b, where

}
T ' S
(k
i = % ,ign : (4)
IOIE
bi=0,i>no' , '(5)
. . . L1
Here the b; are bounded by unity, and n is arbitrary. Then AR = § |(k)‘l~ and
i=1
|A¥|-<TI. Since n is arbitrary, this implies the convergence of
.w ] )
s lwl
i=1 5

<

It.remains. to verify the second part. of Theorem 1. Let n be an arbitrary integer,

‘and form from the bounded sequence ¢; the sequences 0 and 8; , where

@; T¢; . L<ntl . : . . (6)
;=0 , i>nil, )
and } } S
Bi=0 , isn ()
:Bi:cisi>n‘ (9)

<

Let A be the infinite decerminant of the matrix formed from A by replacingthe kth
column by the given sequence ¢;. Let A* be the infinite determinant of the matrix
formed from A By replacing the kth colurim by the sequence 0;. Let A’; be the infinite
determinant of the matrix formed from A by replacing the kt% colum by the sequence B;.

Then

B
¢ * V3
§ 47
a2
PR o=
£, S
et o
Lot —

PR 20
Py TR
o . H

14
SR

§ * °,

LRI &
“

» B

* "

. d

&

. 5
.

.5

- |

i B

{7!’;«

i

s RS

}J N .
& M= (B)e; =S, . (10).
] T=1

3 -
I-i k = - k 4 - S
- Ae—s, = ak (1
p ‘ : S S
' If A* represents the finite determinant obtained from the first n® elements' of the Fo

gu'“ ge : 2 1
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= matrix y;eidlng'_A’; s A’;n— 0 if n < k, since the corresponding nmatrix would: contain an ‘ . _;Z -

”é 5 entire columh of zeros. Furthérmore, . ' %& P

O o e d

by ; : %

% E _ AR |. . £

; |A2 Asz <H@T-I0) , j (12) ‘7/2 ;

i | R 3

i "1 . . < > -
;ﬁ where ¥ is an upper bound to the ¢;. Therefore, for n > k, &iﬂ
B ink _ A |-= |akto= ik . ﬁéﬁi
ii ‘IL-Q 2n - QJ._ IL\ - Snl g— C (H - Hn)’ (_3‘){ ::i

i 2t R
f_( i

A x g, 2,
1

fﬁ and in the limit . a0
3 : . L g f
7 S, =0y, (14) g
Fw establishing the second. part of.theorem. If the elements of 4 are a;; + ] i the o=
£4 < . - . EE R ) - : - i
; fdl-‘l-owmg. statements are:.evident:
i}
" ' ) L i T ‘ e
P (F) + ¢ @, (k) = -8,g.kA, : (15)
: . i=1 " i
1 .
i \ '
{' i: & i * Q ’ ‘ < ’
o () +s e (B) = 5,0, £16)
R B Sk :
-_ %}; and the doable series 5 5 L ¢;. (k) is absolutély convergent. We now apply these g
| I » Coi Tk . ) « .
f L . properties of normal arrays to solutions of infinite systems of linear equations.
R 3. EXTENSION OF CRAMER'S RULE TO\ INEFNATE SYSTEMS'
B ; '
(. ) - o e P :
I . THEOREM 2: Given the infinite System of linear equations
k. o -
ij

s (8, + @) %, T ey, i=1,2,3,° 0 ° < - an
J

.=1 -

B

where 8.. + a.. i normal -array, |e¢.| <M <® g 3

\ i ;j is a normal-array, je | < ?,,

‘ for all i, and the infinite.determinant .A.of the array is nonzero. It then follows ﬁi

| b that the unique solution of the equations is given by %“j

15 _ % )

- %, =, , s : (18) §

[ & E

It where AF i the determinant of the arfay formed from the given array by substitutingi ) ) g{ ~
4 . " , . 5 ! Al
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the sequeiice ¢; for the B columm.

PROOF: " L 3

(a). For an arbitrary j

J o B ® i " ® I
N +2 g, A =2 ¢, (D +3 a.. % e, (¢
k=x Ik i=g 2 &) k=x TR og P <

m.
=2 ec.
z:

i 09 7 3
{J) +k§:: g (k)

Since A is nonzero,

. ;
N KRG

meaning that

SR

X, A

_yields the components of & solution,
(b). Proof of uniqueness.

Suppose. that egs. (17).permitted anothér solution vector

(Y1) Y3, ° ° ° Y, ' ° °), where for some J,

%io T Yio f 0. o

Then the homogeneous system

S (b, ta) =

0 5 i:]_’ 2'9 39 0. 0¢ 0.
J= - L A k2

J Jo

oy
(50)

(21)

(22)

(22)

(23)

admits of a nonzero solution 2z, = %~ ¥, whe‘rg Ziy = Ei, " Vo F 0. However, for

an arbitrary j, we have

© i o .
0 (zi 2 ey zk) = 0.

=1

11

CONFIDENTIAL |

+ -

(24)

oo - : o B v S S

.

(4

oY .

R

£

N

TR

(% | L W WA Ty

i

L T g

Lo BT A

F‘i‘w.g.g‘ﬂg._ah

e

Vo

BTN

JIRTSI




TSI TwTT TR -

o - e = o

CONFIDENTIAL

«© A ‘ k' . o . [ y ~ P
Z o G +2 ey G =z A=, \ : (25)
and since A 7{ 0, z; = =0 for every J, Since this contradicts. (22), the unlqueness of
solution is.praven. .When A =0,Thecren.2 does not apply, and we refer the reader to

Riesz, Les Systems d’Equations Linea ires.,®

In general Theorem 2 is d1ff1cu1t to .apply, since  the hypotheses are stringent,
and even the investigation of the convergéiice. of the double series 22 Ia,., i offers

<

great difficulty. The follow1ng,_theorem\ might also prove useful as an extension of

-------

‘Cramer’ s rule,

‘THEOREM '3: Given the infinite system of equat:.ons

21 I T R R o (23)
J= : i

where Z |a | coriverges for i =1, 2, 3, * ¢ -+, and An. is nonzero for n sufficiently
j=1 “

large. Then, if the ra‘tio-Ai converges uniférmly with k to a limit-E- for

n R : <
k=1, 2,'3;'” e, @ solution 1s g_i-v‘e"n by
xk =‘",-A—-‘, R (24)

PROOF: Let i be fixed but completely arbitrary. As‘s;er."t :
J
_ A i
g G =€ (35)
j=i YA v -

It suffices to show that for n large enough,

j -
Y A
5 o el e . (2
where € is an arbitrary positive quantity, For n > i
J
A
3 4, 2= ¢, (21)
j;_i VAN =
n
and ~ ‘
] .
Ja)
Igi a,.—=~c, | €
jer YA j j
N . N A . .
Ig @, —-2 a, 2|+ I% a, —t-c. |, : (28)
j=t YA = VA FEE R .
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ON LINEAR EQUATIONS WITH AN INFINITE NUMBER OF
VARIABLES. s

By Maxive BOcssr anp Lours Branp.

E. Schmidt’s treatment of a system of linear equations with ast infinite
number of variables* is of such essential sxmphclty and 1mportance that it
: , seems destined to become classical. The original mémoir, however, ow mg
e to its condensation and to the rather abstract form wliich it has in parts is

5 -not entirely éasy reading for the begmner, and Kowalewski’s presenfation,f
o while atfractive in some respects, is extremely long and so arranged that
B ; unless one reads the whole it is almost impossible to get-at thé essential

A resuls.

' -The following tréatment, which so far as it goes is complete in itself,

S is.a.modification of those heretofore given. Its-characteristic features are,

S on the one hand, that it avoids altogéther the process of normaliza-
tion which plays such an essential and often repeated role in the earher
tieatments; and, on the other hand, that it deals first with the ease of &
finite number of equations involving an infinite number of variables and
regards the case of an infinite'number of equations as o limit.
For the sake of clearness, though this is not logically necessary, the
algebraic case of a finite number-of variablesis taken up-first. ]
: 1. Complex Quantities with ¥ Components. The real and complex NI
quantities of ordinary algebra shall be termed scalars in distinction to the :
B higher complex quantities, (ay, @, - - -; ax), which are aggregates of J scalars

—the componenis of the complex quantity—taken in a definite order. Such
complex quantities will be denoted by Greek letters. That complex quantity

whose components are all zero shall be denoted by 0. Two complex
quantltles,

T

im aiiibie o

LW ey
,.

a0y

A

=

22D

we
P T

DA AR S

LN

o = (a,,az, ceeyak), B= (b1, bgy < -+ ybk)y
are said to be equal when and only when a; =b,( = 1,2, .-+, k). We
define the suin of « and B by ;

a+p= (a!+bn,az+bz, ey o bi)s
and the product of a by a scalar, 3 by

po. = ap.  (Hay, Pis; ¢, PO

- Rendwont: del Circolo. Mute'natxco di Pnlermo, vol. 256 (1908), Pp. 66-77. -y
fEmfﬁhrung in die Déterminantentheorie (Ve:t Lexpz:g, 1909), pp. 407455, ) ) R,
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168 MAXIME BOCHER AND LOUIS BRAND. ‘ T
! ) ‘ i &
The » complex GQuantities, ay, a2, - - -+ , @, are said to be linearly dependent
if there exist n scalars, ¢, ¢, - * - , €a, 1Ot 2ll Zero, such that .
aay + s + -+ + Caan = 0, T i ¥
In view of the definition of the compléx quantity O this is equivalent to e
saying that ay, a3, * -+, & are, linearly dependent when and only when the '3
# sets of k scalars each forming their components are linearly dependent. . I
Any £ + 1 complex quantities having & components are therefore linearly ! : ;
depenident.* When less than % complex quantities are given, there are j 3
always others linearly indépendent of them. S ')
We also consider the inner product, or simply product, of two complex
quantities & and 8, defined to be t}}e scalar - - i Fw
af = aihy + @by + - 4 t_lkbk- ) . Ei
b 41 " We note that &8 may vanish when & + 0, 8 + 0. From this definition N £
" g e it is clear that the commutative and distributive Iaws, . 3.
- IR of = Ba, B+ = B+ av, |
| and the associative law in the case of multlphcatlon by a scalar p,
1
e | pleB) = (pa) = =(pB), ]
. all hold good The assoclatlve law; in the case of the product of three or
| more coimpléx quantltles, is nst true. Thus aBy is meamngless unless
] either (aB)y of a(By) is specified.
) A dash above a scalar shall denote, as usual, its conjugate imaginary
| scalar ;and we shall extend this notation by writing
1 o a = (A, @y vy @)
L I Then L
& ; By the norm of the complex quantity « is understood the scalar
;‘ norm «a M| aa = i + Qi + - - - + a4y '=,|a1|2 + Ia’z"2 SRRt |ak.|2g
i which is always real. Clearly norm « = norm a. Noim « is 0 when
Tl and only when « = 0, and is otherwise positive. ) '
1) 2: Hoimnogeneous Linear Algebraic Equations. Consider now a system
of n homogeneous equations in & unknowns
! [ an® + s + -+ + auae = 0
1.1 ' ; , a’zll‘i' + apty+ - + anxe =0
1 - Gy + G2 + ¢+ + amxe = 0. -
1 §o * See, for example, B8cheéi’s Higher Algebra, § 13. ’ R
: {
" - “Q og
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]

We may regard the coefficients of each of these equations as the components
A of a complex quantity: . .
) ; (?'=1s2s"’yn)>

. and also’the ’s as the components of the compléx quantity

a; = (aril, Qizy ***y Aik)

: £ = (21, 22y +* ) Tk).
Our system of equations may then be written )

¢)) aE=0,0E=0, -, 0,8 = 0.
~ THEOREM 1. If ¢ satisfies equations (1) and s linearly dependent upon
511,1 3?2,* ey ;,.,- then & = 0. .

For suppose that _ _ .
E. = C10 + Ca0ty + cee 4 CnOtn. .

Theén multiplying equations (1) by &, &, - - -, ¢, respectively and adding we
get

(Bron + Gty + « -+ + Bran)t = £t = 0.

g ) _ Hence £ = 0, as was to be proved.
T g CoroLLARY. If ¢ satisfies the equations

@t =0,3E =0, < -, Gt =0

. and is linearly dependent upon ay, as, - ‘y.an, thén £ = 0.
¥ We are now in position to obtain a ériterion for the linear dependence of
n complex quantities. If ay, ay, < -, o, are linearly de~endent,’

ciof + s + - - - 4+ Cpon = 0;

where niot all the ¢’s are zero. Multiplying this relation in succession by
a1, iy * ++, an, We obtain the # equations

Geie; + Cond; + -+ o b Caotnir; = 0 E=12 ... ).

In this sysfem of homogeneous, linear equations in ¢y, ¢;, - -, ¢, the ¢’s are
not all zero and hence the determinant of the system must vanish. We
call this determinant, which it should be noticed is a real scalar, the Gramian
of ay, ay, -+, o, and denote it by @ (e; 0z, -+, @s). Thus.

-~

sy ey e+

T T
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The relation G = 0 is therefore a necessary condition for linear dependence:
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17 MAXIME BOCHIER AND LOUIS BRAND.
!

It is also sufficient. For suppose that G = 0; then the n sets of scalars
forming the rows of the Gramian are linearty dependent, and we have

C—Y«(Ci o+ G0t + .- + C,.a") = 0 (i = 1) 2:‘ Tty ll):‘

where not all of the ¢'s vanish. We now infer from the Corollary of Theorem
1 that ‘ . '
cich + G + -+ + Cnin =0, :
which establishes the linear dependence of ai, a2y -0y o We have thus
proved ‘
TheoreM 2. A necessary and sufficient condition that the complex
quantitics ax, ay * 5 n be linearly dependent is that their Gramian vanish.*
We turn now to the solution of the system (1), assuming that thesc
cquations are linearly independent, so that G (e, 2 -~ -, o) + 0. Every
complex quantity, and therefore every solution & of (1); can be-written in
the form ]
3) g o= cay + G+ oo Culln + 7

where 5 is some coniplex quantity. In order that this be a solution of (1),

the sealizs ¢; must satisfy the n relations

B 14

¢ J’ ciai‘aK + C:.‘aka'.’ + e + cnalau = = al‘.'-’
S l o e
c!an&l“"r c‘lali&'.’ e + cllanau = - auﬁ-

Solving these equations for the ¢'s and substituting in (3), we have

. ao ods e o am

QnQl OOl **°  CnGn au:;]

[+3} &» N

s eve Qn 1]
Gloy, 0y +* ) @) -

(5) ' f=-
Every solution of (1) can therefore be expressed in this form. That, con-
versely,.no matter what the complex quantity n may be, the expression (3)

. ahways gives a solution of (1) is seen ab once by direct substitution; for
if we form the prgdu‘cﬁ «.£ by multiplying the last row of the determinant
in the nuierator by @, this fow becomes identical with the ith row.

*We notein passing. that dy, o, +* Sy aré connected by the same linear relation that eonneets

the.rows of their Gradiidn, written agubove.

.
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. N : 1 ) i
It ix alko sufficient. For suppose that ¢ = 0; then the % sets of sealars
forming, the rows of the Gramian are linearly dependent, and we have
Gl at et s o) =0 @E=12 - n),

whiere not all of the ¢'s vanish. e now infer from the Corollary*of Theorem

i that . .
(1231 + Caoxz + e < + Cnlln = 0, o
which establishes the linear dependence of ay, dsy -+, @ne We have thus

proved ‘ ) B
TugoreM 2. A necessary and sufficient condition that the complex

guantitics ay, az, =<5 & be lincarly dependent is that their Gramiam vanish*
We turn now to the sclution of the system (1), assuming that thcse

equations are linéarlv independent, so that G (e, a2, - -, a) £ 0. Every

complex quantity, and therefore every solution & of (1), ean be written in

the form A \

3) L= Qo + oty + -0 + can + 1

where 7 is some complex quantity. In order that this be a solution of (1),

the sealars ¢; must satisfy the » relations

. . . . . K3 . . . - - -

’

cla’nal + (“.’.aua:’a + cnauau = 'T anﬁ:‘-‘
Solving these equations for the ¢'s and substituting in -(3), we have

oy ond: |t Ml ayt)

. . . . . . - .

Q0 00k Qalin an

oy C-Yz . o l.-!,. -7
» £ =
(O) = G(aly Qay *°°y dn)

Every solution of (1) can therefore be expressed in this form. That, con-
versely, no.matter what the complex quantity » may be, the expression (3)
alivays gives a solution. of (1) is ssen at once by direct substitution; for
if we form the product ;£ by multiplying the last row of the determinant
in theé numerator by «;; this row becomes identical with the <th row.

* We note in passing that oy, as, * -, an are connected by the same linear relation that.connects
the rows of their Grainian, written as above. :

.

"‘Ciil"i‘av + csoyoer ¥ -+ - e Q:.Cilalz. &= &= g - .
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‘ : ! Bl
t s
‘ S THEOREM 3. If the equalions ’ ' Lg 18
P S |
.,:' " . N \;é 2 A
4 .!o; . 't=0 a.;f: 0 "'yans'= O’ ?‘. :
vy i i
g are linearly independent, iheir general solulion s guen by (5), where 7 is an Hf.. i
e arbitrary complex quantity. 3

When &, vanishes, we sce from (3) that 7 1s linearly dependent upnn o,
G, - v+, ane  Conversely, if 7 is linearly dependent upon a, a, -+, o, the
Cea same is true of &, and hence, by Theorem I, & = 0. Now to two 7's
corfespond two &'s whose differénce is precizely that solution of (1) which

A corre~pond"~ to the (Ii'fférerretf between the 7. Consequently two different
T 7's yield the same & \\Yxen and onlv when their difference is linearly de-
2 pendent upon &, @y - ¢y Fne
& If > k the equations (1) are neces»aml) linearly dependont =0 that
< Theorem 3 does not apply to this case. If » = Lk every 7 is linearly de-
| % penident on the:a’s, so that in this ease, as is well known, equations (1) have
hat : only the trivial solution zero. If 7 < & we ean find k — n complex quan-
’ J tities &uqa, Gnsay - 5 o such that ag, o, + - -, o are linearly independent.
- ‘; . Then every 5 may bewritten as Cioy + Cozts 4 - -+ 4+ Cron; but ax a ehange
S in 7 by a quantity linearly dependont upon ay, oz, - -, a, does not affeet
fi formula (o), we lose nothing: in generality if we assume 7 of the form
4

77 = C;l+i'all+l' + . + (/L&L.
Thus the solution (5) contains, as it should, & — n arbitrary sealars, C),.1,
++; Ciy and contains them linearly and homogeneously. :

P

e

. ‘Q‘ R X
S, g
O .

- "‘; A formula: for the rorm of 4 is readily found. From (3):
,‘d ‘ . (6) rorm & = Genkr + < ¢¢ + Guanda + 98 = nf
' 1 - . - . ) -
» If we form the product 7& from _(5) by multiplying the last row of the déter-
= niinant in the numerator by », it is clear that
. G(ah ey *° 7y 77)
! ‘ 0 = i P,
T 8= G o
i *: ] We proceed to use this relation to establish an important property of
Y Gramians. In (7) ay, g, -« -, &, 7, may be regarded as n+1 arbitrary eom-
r plex quantities; we will assume that they are linearly independent. Then

7 is clearly not a linear combination of &y, as, - -+, @, so that & = 0 and
norm £ > 0. Moreover this assumption entails that none of oy, o, - - -,

" ”I aisy 7 vanish; and héence the Gramian of any one, €. g., G () = ayay, is real
? ¥ and pesitive. Henee by giving to # in (7) in succession the values 1, 2,
A we establish by mathematical induetion .
| Tueorem4. The Gramian of any number of linearly indépendent complex
) ”"’”‘[j quantities is real and positive.
N
: :
7 )
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. , . ‘ i .
3. Non-Homogeneous Linear Algebraic Equations. We come now to
the system of non-homogeneous equations :

(8) ol = bl; anf = b‘b ceryanf = bn;

where we again assume that o, as, -- -, a. are linearly independent, and
try to find a solution of the form '

9y fo = €ai + Cas + -+ - + Callie
Substituting this in' (8), we obfain = linear equations, whi¢ch may be obtained
from equations (4) by replacing their right hand members by by, by, - - -, b,

respectively. These can, as above, be solved for the ¢’s by Cramer’s rule,
and the results substituted in (9). This gives

aq&f 0’1&2‘ e Ol]&n - b]'

v

.
Gpty Qullp  **° OOty = b}i

10 . | & & . G 0

& =
%0 G(u"‘ Qzy ** vy an.).

That this is really a solution of (8) we see by direct.substitution. For if
we-form the product « &, the last row 6f the deétermiinant in the numerator
becdimes ) '
aiab di&g, Ty aiam O;
and, when the ith row is subtracted. from this, it appears that
: aifs = b,G/G = b

We have.thus proved .

THEOREM 5. If ay, oz, - -+, an are linearly independent; the equations
(8) have one arid-only one solution of the for (9), and this is given by (10).

The general solution. of (8) is of course obtained by ‘adding to the par-

ticular solution (10) the general solution (5) of the homogeneous equations
(1); it is therefore

a_,c'n 011&3 LR oq&n 017-7 L bl

.

QaQ§ Gyl ***  QuQp 7] ~— b

- - -
al__ag Q00 oy, ”

() -
G(qh apy * an)

E=fHh+ 4=

The solution (10) of (8), which is characterized by being the only solution
of (8) which is linearly dependent upon the &’s, shall be called the principal
solution of (8). It has also another characteristic property which may

[ A R * a - -—
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y “'. N
. be deduced as follows. From (11) we sce that :
0, - t T “r .
i~\" : ES e (50 + sl)(s() + l) = sUsU + s(lsl + Siso S$i151,
: and from (9)
° i - =T _ :
. ke = clalsF 'j" Crofy A o + e §y = 0, R
. .
I remembering that & is & solution of equations (1).  Consequently £ =0,
s 4 a -
= and .
- (12y noma § = norm £, + norm &,
. $0 thiii
o nofm & = norm &,
¥ -
e the equality sign holding only when & = 0, in which case & = &. Thus we
T ‘have
THEOREM 6. Amiong the solutions of (8) no other has so small a norm
- -as the-principal solulion.
21 To obtain a formula for norm § we multiply the last row of the deter-
o minant i in the numeratox‘ of (10) by %, and simplify by use of the equations,,
Fal &y = by; thus?
X :“;ﬁ - a,c-x; a:&-_r 00O le&r, b]
w] . - R Ce e e e
' - a,,a?l a"&-_’, 0200 anc-\'n b'é
-5 P07 L3
' 2 ;- by b s ba 0
(13) norm £ = — T s S .
T j.'g \Kyy Q2y €45y '“’u‘)
8 Norm "1y now given by (12).
N 4. System of a Finite Number of Lmear Equations in an Inﬁmte Num-
KX ber of Variables. We now consider a system of n equations
? (14) (1111'1+(l;31'2+ oo =0 (?:= ],2, "',N),
! where the number of unknowns xy, ., «- - is infinite.  For this purpose we
f use complex quantities with an infinite number of components. If o« =
Sy (a1, @s, -+ +) is such a complex quantity, we consider the seriex «; * +  as.
A7 1
o + ..., If this series is convergent, ~\\<, say thit the eomplex quantity
i \ has a finite norm and define
L,
Zd s T N e
o Norii a = ;u, i-’ -+ {.,._ %-’ ey E f o .
%m *1f not all of the b's vanish, it = clear from equations (8) that & s 0, :and !wm-o norm & > 0,
s By nicans of (13) we may pow prove at once the followirg
« TieonesM. [f the Gramiin of Unearly independeal caneplex qaaaditios is Iumluul by sealurs.that
s o3 N do nol all ranisk so as lo form a determinant of the type of that i (13), s bardered Gromian is
. * negaiire, :
S o
B
- 0:\}
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-
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The sum of & = (@, @, ---) and 8 = (b, by, - - -), and the produet of «
by a sealar p are defined as

at+B=(@m+b,aa+by ), pa=ap= (par, paz, - °)-
The product o we define by the formula
af =ahy + asb + -+

whenever this series converges: When « and 8 have finite norms their
produet af alwavs exists, as then the series in question is absolutely con-
vergent. For writing

ar = (|ai}, Tazl, - - -, Jax)), B = (AREAS "",-Ibk h
we have from Theorems 2and 4 '
G(ak) 3&) s

Heice, as ax = & and By = By,

arar o

Broxs ﬁkE/:

-

W
(=]

(arfBi)? £ norm «-norm B

Jabi| + -- b £ lal] B8l

Since ‘this holds for all values of %, the absolute convergence of. our series
is establixhed. .

The distributive law, a(8 + ¥) = af + «v, evidently holds when o8 and
ay have meanings. Thus, in particular, if o and g have finite norms, we
have

or

norm (a + B) = (a + B)(a + B) = aa + Ba +-of + 85,

so that if two complex quantities have finite norms their sum also has a
finite norm. It is also obviously true.that if a complex quantity has 2
finite norm it will still have a finite norm after being multiplied by -a scalar.
From these two facts we readily infer that if a number of complex quantities
have finite norms any complex quantxty linearly dcpendent upon them also
has a finite norm.

Using the n + 1 complex quantltles

—-(an, i2y "') (7:=1)2:"';n);

t: = ('tly Tyy o '):
the equations (14) may be written
(15) af =0, of =0, -+, apt = 0.

We place upon the coefficients «; the restriction that they have-finile norms.
Then £ is to be so determined that the series « & all converge to the value
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zero. If £ has a finite norm the series ;£ necessarily converge, but this
may also be the case when ¢ has an infinite norm.

THeOrREM 7, If & schsﬁes the equations (15) and is linearly dependent
On &1, @z, » + +, Oiny thep & =

The proof is exactly that of Theorem 1. We shall define the Gramian

~ of a set of complex quantities of finite norm preeisely as was. done in §2.

THEOREM 8. A necessary and sufficient condition that n complex quantitics
of firite norm be linearly dependent is that their Gramian vanish.

.The proof is precisely that of Theorem 2. .

THEOREM 9. If equations (15) are linearly independeiit, their gereral solu-
tion is giver by formula (5), where n is any complex quantity such that the
products outy s ¢+ +y ann all exist. )

The proof is practically identical with that of Theorem 3. In order that
the solution £ have a finite norm it is necessary and sufficient, as we see
from (3), that » kave a finite norin.

Here, as in §2, it is clear that two 7’s lead to the same solution £, when

‘and only when their difference is linea_rly dependent upon ay, as, ¢ - -, @

The. requirement that » be so chosen that e, a9, -+, a.q all.exist
will be fulfilled when 5 has a firite norm. It will, however, bé fulfilled in
_many other cases. For example, denoting the components of a; by au,
@p, %+, if all the ajf 's are posltwe and. @;; constantly decreases and ap-
prgachec zero with i mcreasmg j.» we may take for  the complex quaitity
(+1, — 1, 1, — 1, --.) whose norm is: infinite

Whenever £ has a ﬁmte norm, 1. €;, whenever this is true of 7, its normn’
is given by formula (7). As in §2 this formula may be now used to establish -

THEOREM 10. The Gramian of any namber of lincarly independent com-
plex quantities of finite norm is real and positive.

We now pass to the non-homogeneous equations: *

(16) ) ot = bl, 0125 s bz,' o en§ = bn,

the coefficients «; again being assumed to have finite norms.

THEOREM 11. If ey, 0, - -+, an are linearly independent, the equations
(16) have one and only one solution linearly dependent upon a, a-z, oo, Oy, and
this.solution is given by formula (10).

The proof is precisely that of Theorem 5. The solution in quéstion is
termed the prin‘cipal solute’on. The general solution of (16) is gi'ven by

.wrmuw. \11}, wnere "1 lS uny complex quanuvy \V!!USB pruuubbs “!bll @,

0z < *y Ot exist. .

THEOREM 12.  Among the solutions of (16) no other has so small a norm
as the principal solufron.,

The principal solution, being a linear combination of « on, Oz, +* %y Cny

1
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'
has a finite norm. This ix also true of the general solution, & = & + ¢,
- when and only when & has a finite norm.  From hére on the proof is just
like that of Theorem 6.

The norm of §, is given by formula (13).* ;

5. Some Theorems on the Limits of Complex Quantities. We proceed
to establish xome properties, which will be important for us, of complex
quantities with an infinite number of components.

If o and 8 have finite norms, we have from Theorems 8 and 10

- lea ap
G(a; gy = l—.
Ba

o

S

| BB =|°‘7|2'/32—Jaﬂl2\20y
whence :
(17) lag | < [« 8]
lAgain, if ¥=a+8, we have, using (17) and remembering that
; | & = (24 » B g
: [vIP= (@ +8) G +5) = ad + ad + fa+ 67 S [al +2|e||8] +] 8],
@18) o Iyl <lal+18]
We next lay down the following X ;
DeviNritons. If a; = (Quy, Ansy - <), &= (ay, @2y -5, wesaj thal o,
conrerges to « as i becomesiifinite when : I

N ST N YK BRI T Y

A

g 4

Do
RN

lim a.; = a; t=12 -,
and write ' )

lim a, = a.

n=»

We say that a, has strong convergenc: toward « when, for all values of n
greater than a certain number, « — a, hac a finite norm, and

lim| o — an| =0,

n=as

and write, using Schmidt’s notation,

:: . lima, = a.

‘ 5 n=»

. Strong convergence implies convergence.  For if lim,..., l a = o

B -0,
) there Q’ixists‘ for every positive €, an integer N such that
\ ) s &

- (19) giawa,..-i'ﬂ«a, n> N,

- * The theorem regarding bordered Gramiaris, stated in the footnote to formula (13), may
now be generalized so as to-apply to the Gramians of complex quantities with finife norms. . ¢

t Due to E. Schmidt, L ¢., §§ 1-f. See also waalcwski, L e, § 165, :
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' i
=0 that : ( A )
i i = 1, :_’ ceedy
(20) la: = ani| < ¢, 2> X,
or
lim a,; = a; (z— 1,2, :-.)*

n=n0

If lim,.. ¢z = o and o, has a finite norm when =z is greater than a certain
'numbé?,—then,a will have a finite norm. For (19) states that when n > N,
a — a, has a finite norm; consequently the sum of o» and o — o, has a
finite norm.

Again, if lim, ean = o, hm,.=, 8. = B, then
(21) im(an + Bn) = o + B8;

n=n

for we have seen that-when z > N,a—a, and 8 — B, have finite norms, and
hence from (18) we- bave

fadB - Bal Sla—al| +]8 -8l

Furthermore if &., 8, havesinite norms whenn > N, so that «, 8 have finite
norms, .

- (22). lim.a.8n = of;

for when n > N, we have, using (1’4") and (18), <
|aB — cnn | = (@ — 6)8 + (B — Ba)a = (a — ) (8 — Ba) |

Sla=an |8l 418 =Bu]lal+Ta— a8 = Bal-
Important special cases of (22) are

(23) lim a8 = aB;
24) . lim norm o, = norm q«.

THeOREM 13. A necessary and sufficient condition that lim,—., an exist 18
that, whén n and m are any integers greater than a certain number, o, — O
have a finite norm, and that o every positive e there correspond an integer N
such that
(25) lan — am ! <o m,n > N.

The condition is necessary; for if llm,,=,° arn=a, | a— an| < 3¢ when
n > N. Hence whenm,n > N

* We say that an converges uniformly toward « when for exefy positive ¢ there caists an ¥

such that (20) is trie. It is clear from the above that strong convergence implies uniform con-°

vergence, and uniform convergence implies convergenee; but these implieations do not hold in the
reverse order.

o
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J, Ian—am|=lan—a+a—am| |an—al+la-am|<e'
v i
e To show the sufficiency of the condition we first observe that if (25)
e holds,
G el E.lauk_amklé<52, . ! m7n>N)
= r=I ,
: and hence _ =1 S ¥
é‘i This shows that lim,-.a,.: exists; denote it by a;.. Then as:
3.4 =
g glan} o an!k '2 <‘62; .m! n > N_,
44 = < @
Ed ]
. llm‘z,la,.k—— ami|® = k;iak'—amklz L£e m>N.
’ As this holds for every, p, we-have RO
: ' Sla—amiP < & T m>N;
Zi k=1
:\ " or, upon writing & = (ay, @, - ),
- lim|a —am| = c -
. ; as we wished to prove.
CoRoLLARY. When condition (25) is fulfilled and o is always of finite
L fiorm, « 18 also of firitte norm.
} DeriNiTION. The infinite series of complex quantztzes ay+or + -
-k said to converge strongly to a complex quantity ¢ when ¢, comerges strongly to

o, vhere g, = ay + -+ + a.

From Theorem 13 we see that a necessary and sufficient condition for:
the strong convergence of the above series is that after a certain point the
terms of the series all have finite norms and that to.every poutlve €, there
correspond an integer N such that :

(26) . |a',.—a,,,|=|am+1+a,,.+g+‘---+an|<e, m,n>N.
Derivition. Thwe complexr quantities o, 8, are eaid 4o be orthogoral if.
B, and hence also aB, 1s zero.
If the o’s have finite norms and are mutually orthogonal, we may by

:nnnnrm- l?ﬂ\ rnnr‘:l:y !'Al'll!nn -t tc vhw fu. m

lam+1|2+lam+‘2'2+"'+|an'é<52’ m,n > N.

This being precisely a necessary and sufficient condition that the series
| as |2 4+ | @2 12 + - - converge, we have proved .
THEORE\: 14 A seriés of mutually orthogonal complex quantities of
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¥ é finite vorm is strongly: convergent when and only when the series of their norms
=y converges.* ‘ 5
3 e . e 0 | O N - Y
¥, q Furtherimors as foy |2 = {a@ P4 las |2 + » o ¥ fan 2, e infer from (34)

<

' ;&% the

Y CoroLLARY. If the condmons of Theorem 14 ore fulfilled, ti‘e normi of the
) °°~3 seriea 1s.equal to the series. of ‘the ©iorms of the terms.

LT 6. System of an Infinite Number of Linedr Equations in an InSinite
s | Number of Varisbles. We sre nows in position to consider the infinite sys-

o | tem of homcgénecus equatlons in.an infinite number of variables

SO g A

55! : @n af =0, af =70,

L where ’ .

- a; = ‘(ajil, Ty, ') (7" = 1;‘ 2.’ .+ "),

e e £ = z(xr’. Ay .,)’
e e T We asstifie that. all; the coefficiénts a; have finite_norms and none of them
. are linearly dependent. The- .general solution, £, of the first n of these
i equatioris is given by formula (5)
T g . al&l. dlz‘:_g e ‘ql&:';i; aﬁ')
) & z)l . _. ) . - . . ;. N

:"\“) ‘{ 0 c. fanoty. ‘d{:{O_lz st Qi Oy

P TT O 5 - - - -
S - . Q2 % Qy 1
e 28 <") J" = e - et
) _:;iﬂi . ( ) L ek G(ah oa; vy 0tn),

7 Here, (01("’ ™, ..o c,.(")) isa SOIutlon of .equations (4).

g+
N LA LY
- 4t .

!
'1
1

.

VT i oo
WA

S
'

We wish fo show that 4™ converges strongly to g limit asn = »;
and to this end we proceed to throw it into the form

) TR = 5O (5O — £O) 4 (B — {OD),
If we write
ci(”) -— oi(”"l) == z‘(n) (": - 1’ 2, N il — 1)’
’ c"(n) = z”('l)’.
and subtract from the first n — oI équations (4) the similar equations satisfied

by ("D, « .+, eamy™ D), we find that the 2’s satisfy the n—1 homogerieous
equations .
[ ™ - oz;a.lzz(n) 4 oee @@z =0

Gn-1012)™ = ap1@2™ oo - dpr@nzi™ =0,

* The proof .above eetnbhshcs the more: general theorem in wluch thie condition of orthogo-
nality is replaced by the condition ai&; + aja = 0 or (real part of &g &;) = O'when i oo, i,j =1,
D s,
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3 . '
ff‘ Moreover we have - , .
'*:é‘ ] 2O = 500 = W - WG 4 e 2,05, (=23, ...),
: 'Z‘ Solving the homogeneous equations for the z's and substituting in the last
;@ equation, we have -
3 (29) : ™ = H0D = ko,
. g Where k. iz an un&etermmed scalar and
. 4 ‘
f 21‘ _aiax o s iy
s 1 3 . . . S B _
'- 3 v. ... . o - . _ . o . .; ) (ﬂn = 2,\ 3,: .o 4).
. :f OlnaiOl] OyeiO3  *°°  Clne1Qn
:Q-l &1 az 0008 a. |
5! Multlplymg ‘both' sides of (29) by a, and using (28), we ﬁud H./Guy
3 = [.G,, where, for brevity, we have written E
ey @ ¢c¢ e e
;- ﬁgg-:: ~=‘o o= -o - : Co .: (n$2:‘3-,-..),
s Gpi0l)  AneOp 000 OpeiOnel  Oatl _ s :
} _ - ’ \ auai' &n:at eod” anaft-l an’-Y I
: - Ga=Glas, *+y an).
Therefore ' i
g ’ M £ (A=)
;J 2 " N Gn—l G.. Ony
[ and &350 = 3 (am/aga;)a,, we have, if we set 1= ar, Go= 1, Hy = o,
Nam Hn
£, (m) - ? - mmsavncmmtn
(30) (e n é G._.G. @ne
If 5, and hence £, has a finite norm, we see’ from (6) that norm &™
N = p£, (™,  Assuming, then, that this is the case, we have, since p.n=H,,
; 3 nmm H 2
l‘\ (31) norm 4™ = | njt = 3 H .
Y wml Fn=1Tp
\ The series of positive or zero terms
- 190\ . s.‘ _L{I:_t
\ee . n‘:’l Gn—lGn

f’s therefore convergent for every n of finite norm since the sum of its first
m terms is by (31) not greater than | |2

We next note that. the terms of the series of conplex quantities of finite
norm
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2 H, .
33 Dl ak,
( ) . E Gn—lGn s '
are mutually orthogonal; for-as
o ona; = 0 (t=1,2,--,n —=1).
we hdve - : C NE
CnPm = 0, . m< n.

By Theorem .(14) the series (33) will converge strongly: if the series of the
norms of its terims converges. If we use the relation

| ?ﬁ?’n L ¢uaﬁGﬁ_=:‘ = G;;Gn-l';
this series of riéfte proves to be précisely (32), which we have just shown
to be convergent when 5 is of finite norm. Hence sériés- (33) converges
Strongly when » Lias a finite normi, as does likewise the series

i . . - » H“ - 5 = -'-" .
(34) Azl - _l_l_nlél'(ﬂ) =9 < "§l GA,;_;G.,:‘D'A' =97== ,§ n,:an Pne

m=n

£, is & schition of equations (27) having a finité norm. For consider any
one of these eqiistions; say axf = 0: since

. o o™ =0 (i = k k41, -2,
we have from (23) , o '

lim (51™) = aibr = 0.
That £ is of finite norm follows from the fact that £™ is always of finite
norin ahd converges sirongly towards &,.

Corversely; if £i is any solution of equations (27), we may obtain it by
letting 4 = & in the formula (34), for then all the téerms after the first
vanish. Thus we have proved

TaeereM 15. If 5 138 a complex quentity of finite norm, £, given by
Jormula (28), approaches.a limiting complex quantily of finite norm as n
becomes infinite, anii this limil, &, is a solution of the equalions (27).

Conversely, every solution of (27), whether of finite norm or not, can be
obtained by properly cheosing 4 in (34). '

From formulas (24) and (31) we haveé

o , : : o = |H, !
(35 norm £ = lim norm £® = | n|t — o a.

whenever 4 is of finite norm. Referring to (7), we see that tl}is may also be
written as

B T hG(al) Qay ***y Qnj i’) :
(36) PR El - }::2 G(al, oy ° "') au)
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We tuen now to the non-hiomegenécus équations:

(37 anf =by, ok =by -

where we again assume thst all the coefﬁcxents «; have finite norins and
rione of them are lmearly dependenit. The prmcnpal solution of the first.
n of these equations, which we will denote by £™, is given: by formula (10)

fonan t.alaz OO 'O_!lau by
. . 5 % . . Fi

. . . - . . -

P - 7 -, i
Qnly Gulz  cF @iCa =D

Q) ) i g g, LG, vt A O]
(38) & = Xea,; = Glan, az, =~y )

Here (6™, 6™, - .., c,."") is a solution. cf the equa}tlons obtaified from (4,
by. replacing their right-hand members, iy — ogfl, v+, = oaw by
b, by, -+ 5 bs resper’nvely. A consxdera.tlon of the process bjrwhich &™ —

D Was obtained .shows. that we. ingy obtain £® = £® from this ex-

pression by replacing = am; — oay, <+ 65 = 24 7OF by, bay < - ¢, by Tespectively;
consequently in piace of -- H, we must now mtroduce the determmant

' nd g cvc @laet :'b,i; ‘
ooy ondly v C,Yzan-l bz i

cBl=bl) B ’ - . ¢ . . . °(n=2’ 3’ ”')
anoy auag' e ané?}-_—l bn_ )
and we obtain :
B = B = R
As
bl = 5

) = L=
& S ooy oy

n=m ) 1;”
:L:l Gn-ﬁt L

We are thus led to consider the seriés

(39) L™ =

T .54‘
. : £y
(40) ,‘zl G, a6, @n
whose terms are mutually orthogonal complex quantities of ﬁmte notm—
as we know from the previously established properties of pa. By Thieorem
14 this series will be'strongly convergent when and only when the series of
the norms of its terms
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- ) > [ B, -]"-”
(41) "z '
n=1 GY-Q-)G ’
converges: Thus when series (41) convérges we have .
0 o B n
42 j = lim &™ = 3, .
( ) » £ 150 et Gn—xGn " ©n )

B2

and dn argiment similar to thdt which follows {34) shows that £ is a
solution: of equations (37) having & finite norm. Now if equations: (37)
have any solition, £, of finite norn, then, as £&™ is the sohition of least
riorm of the: first of these equatlons, :

norm £ < morm €5

aiid since norm &™ proves to be precisely the sum of the first m terms of
(41), the convergence of this series is establishcd. Thus we have proved

THEOREM 16. A necessary and sufficieni condition thal equations (37)
have a solutiori of finite norm 1§ that the series (41) converge. When this is
the case, £, -givén by forriula (38),.approaches sirangly a hmmng complex
quantity of ﬁmte norm dsai becomes infinile; dnd this limit, &, s & solution of
the equ(ttwns. .

£ is teymed the pmnmpal solutwn of (37) W’e may form the: géné’r‘al
solution by addmg to_ the Dartlcular solutién £ the. general solution & of

<

equatlons (‘77) - _
i @ity ol ¢ by, am—b|
R M S ¢ ©é 5 0 p . ©

. . . . . . © 7 ¢

< i R - - - )
anai G0l Tt Gy O bn'
. ) a’_ &2 9006 On ﬁ
4 £ = = lim S S i
( 3) E EO + El "=”. G(d{, Oy * 40y a")

From the Corollary to Theorem 14 we have
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g If & has a finite norm, the same is true of ¢, and ‘
s S norm ¢ = norm -+ norm &,
R
: for from: (38) £°<")£, = 0, so that upon applying. (23), &fr = 4;20 0. Con-
. sequently
L norm s _>____ norm 3:"0 !
; i the sign of equality holding only when £ = 0 in which case & = £&. Thus
B we'have proved” ) -
ke THuOREM 17. Among the solutzons of (37) no other han s(rsmall a norm
f34 as the principal solution.
o 7. Some further facis.—The general solution & of the homogeneous
i equations (27) is & function: of the complex parameter g
[. = ¥(1).
’ A glance at (28) shows us at onceé that ¢ is, in an extended sense, a -
: linear funiction that is .
[ THEOREM 18. If v/, 2", «+; n'* are complex quantities with finite norms

and-&; -+ -, ¢ are scalars, ihen

e + oo+ en®) = el’) -+ + e (n™).

A further lmportant fact is that ¢ ha.s strong contmmty for™ every value
. of -with finite norm; that is _
TueoreM 19. If v’ has a finite norm, then as 7 approaches 7 strongly, 5 ’
¥/(n) approaches y(n') atrongly.
" To prove this, we derive from Theorem. 18 and from (3.')) the relatwn

norm. [¢(n") — $(n)] = norm ¥(y’ — 7). £ norm (" = .

from which our.theorem follows at once. :

Let us now ‘denote the components of » by w1, 42, -+ -+, and the com-
plex quaiitity whose first-» components are ¥, - -, ¥, while all its sub-
sequent components are zérd by Nns Then, if 7 is of finite norm,
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Formorm (g — n.) = Izm-xl + lyn-ﬂlz .+ +, and, this being the remainder
‘of & convergent series, approaches zero as n becomes infinite.

Let us denote by ¢; the complex quantity whose ith component is 1
while all its other components are zero. Then

F.K'F;" F T ST e g j

e

oy v oo Gy ) S - 4

e

T e i R
B

. dnal cee an&n Diny i

[

1o e an € .
vll(e.) = llm o, - e,

Ty ¢y :(l,.).

2y

i

v} e omn

B
}

i

i

.
e
.

-—":ﬁ.’.%";.'»r

SN
e




T v .

S

g"é e _ e i e . oo . .- =,
= EMIN (e o A e e e L G = t=St aua= =S SRy S e — o TE o Bty

;"«‘i?
REW
Sl

3
>

DRI T
RS RLEY. A A
s ‘ i

e g
b Q
- L

@
%"

v

- e
2 ,;&Kigi;}f__ -

S

o

it
2

W

g & g

}
LINEAR EQUATIONS WITH INFINITE NUMBER OF VARIABLES. 183
1

THEOREM 20. A necessary and sufficient condition that the homogenéous
system (27) have no solution of finite norm except zers
Y(e;) be zero.

That this is a necessary condition is obvious. ,
assume Y(e;)) =0 (1 =1, 2, ---)., By Theorem 18, ¢{n) = O ' whenever »
has only a finite numiber of components different from zero.” But, by (45),
every 5 of finite norm is the strong limit.of such gset of #’s. Consequenitly,
by Theorem 19, ¢(») = 0 for every 4 of finite norm; as was-to bé proved.

We have expressed the solutions £p-aiid & as well as theit norms, s the
limit of the ratio of iwo determinants of order n 4 1 and’ n as n becomes
infinite. We' proceed to inquire under what conditions the individual
determinants, and not merely their ratios, converge. In all cases. the
denominator determinant is G(ey, --

verge. Thiis we have merely to consider the convergence of Glai, + +-, an)
as n becomes infinite, or, as we phraee it, the convergence of the infinite
Gramian, G(a, oz, -+ *).

THEOREM 21. A sufficient condition for the convergence of the z”nﬁni’te
‘Gramitan -of the complex quantities o, os,. - which have Jinite norms is that
the infinite produci T;=, | a:|? diverge to zero or converge.

Consider the set -of complex quantities 8; = aif|a;| whose
all unity. We have, then, :

o

norms are

(46) Glas, ++=, &) = GBy, -+, By H [areff
Now - _ _ B <
BBr i+ BiBamr  Bifa B
GGy o B =|" - - 186, -+, Bo).
Bn-1Br  +++ Bn-iBn-1 Ba—1Bn :
Bnal Bnﬁn—l 0

The first term on the right is a bordered Gramian of the form of the numé;r-
ator of (13) and is therefore negative or zero (see footnote at the end of § 3).

Consequently

G(Bl: ° % ﬁr) G(Bl’ ) ﬂ!l—-l);‘ )
and since G(B,, - - -, B.) is never negative, lim,_.., G(ﬂl, + -+, Bn) exists. Tfius
when []5- l|oz.|2 diverges to zero or converges, we have from (46) that

Gla;, oy, - - -) converges, as we wished to prove.

CoroLiarY.1. If G(3i, Bs, - - ) + O the condition that T ;- ,loz.l2 dwerge
to zero or converge 18 also necessary for the convergence of Glay, oz, +++).

18 that all the quantities

To prove it sufficient

) @), and if this’Gramian converges
as n becomes infinite, the determinants in the numerators will likewise con-
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186 MAXIME: BOCHER. AND' LOUIS' BRAND.
'(“of’.e!:‘ ARy 2. If TLoey el = O, then Glan, apy =) = 0n
We ¢:also note that. G(ayy azy +++) = 0 when any of the complex auanﬁﬁfes
are linearly dependent. -
From Theorem 21 we now see that the determinants oceurrlng in the
éxpressions for £ and &™ (and for their norms) vaifzomverge asn = & if,

it the: start, the equations (27) and (37) ra peetxvely are divided through-

by scalars so as t6-make the norms of all the a's £ 1. If; when this is
done, ‘Glaiy azy - ') *+ 0, the formula, for & and & furnish solutions’ for

these infinite systems of cquatlons in‘termis of infinite determlnants, properly

socalled. Of course thelast row and column of the numeérator determinants
must then be written as_hrbt row and eolumn.
Cansriper, Mass, aND CiNcinNaT: OHro,
Deceiber, 1911,
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APPENDIX [T

Consider an infinite dimensional vector space V {5, T],Cy o o "} over the field
) )

of complex numbers. Each vector is of the form ' ;

= (xq, Zapren o, £, o) ’: . ! W
or
x4

Xg

"= - (2)

9

PTK -:‘T - whére. thé caiporients: . are from the -complex field., Place the restriction on the
£ *1 e vectors -6£ V that '
S .
" ) ® 2
S~ Fé Z l"t! converges. . (3)
L gl =4 .
= N
ol ‘Define the inner product of two véctors as
ANy . , v
L [ © . .
ot € m =2 % : (4)
S = -
o . .
E” : _where x, are. the components of £, and y; those of m. The series defining the inner i g
o ; product of any two vectors.in V converges because of the condition expressed by 13). 5
A Y ey
}\ ‘; Also, define the inner product of.a vector with its complex conjugate by g
\ i ’ — ) .
Y €, 5 =P =2 27, =32 |z )* (5)
)] €. ¢ HeliF =2 =7, =2 I=l"
- "{ . . ¢
s §] 2
’, ’fl ‘Notice . that . Hf” =t if and oiily if all the components of £ are zero. & is normal kg
CL %’; if H§| |- 1. £ is orthogonal to 7 if ‘ v %
o é:‘! ~ ¢ - ,".‘
¥l e ; . ) E i . )
gw%l, (52 = 0. . (6) gl .
Voo . 3
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Ib is obvious that if éi, 52, 50 60 5

, &, satisfy condition (3), then

dy g ¥ @€y + o0 ooy € does. | S '

5 I
We say-that the sequetice ‘fi, fé, SO0 GOL én‘v +- - o converges stromngly to € if

lin |1€ - &,:11-= 0. (7
nie &
If we designate by ¥ a set of vecters savisfying condition (3), a vector.& is =

linit vector ¢f M if an 7j exists in M for every € > 0 such that Hf 7]H< €s When
A complete seb,M is called
Liriear if, for £ and 7 in M, we have all vectars 0y £ + 0y 7jin M.

I conitaitis its limit vectors it is called complete.

Let £, v=1, 2, §, If M is. the set of iall

finite linéar combinations of the &, with constant coefficients, then the .set.

oo v+ o-be an infinite et of vectors.

vEH - M', where M’ is thie set of limif vectors of M, is. a comp. lete linear set, and
& ,v=1, 2,3,

set v if it is orthogonal to its basis.

o » o-ig a basis for 7. A vector is said to be orthogonal to d
As in the finitée .casé, a badsis may be re-' ~-
placed by a normal orthogonal basis. (The so-called Schmidt process).

If v is a linear set with basis &, , v =1, 2,.3, «- =

véctor satisfying conditioni (3), then 7j decomposes in. one and 6iily one way into-the

°; and 7j is an .arbitrary

sim of a Vector iii ¥ and a véstor orthogonal €o y. That is,;
n=§ *poy ' (8)

where £ is.in ¥ and p- is erthogonal to . p is called the petrperidicular vector 6f
7 with respect toy. |lpl] =0 if and only if 7 belongs to 7.
‘1 d — ( O G G O O 0)
s gnj and 71 Y1, Yas b yk H H
>y, %ips, * ), pomay be constructed. £i= (ry,rg o oyry)

Given a sét 7y = {751 .

.

and let i = (&5, -Q:J) - Then p: 15 given by

Maa  Mag™ o0 0t Uag & Has'  Maz o o S0 Uy

HMs1 }izz L ¥ 1] fﬁ Moi  Hsa o e o M\

£ .a T - ‘s N T T Py

I b e e e
|G G - < E) \77_ |

| ' : ' (9).
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If v possesses ait ‘i'nfir!ite basis §;,~ y=1, .“2, o-0- o
«© - ) - - N ‘ .
p=n=2 (O, B) B, ; R (10)
vl <
’ where B, is a normal orthogonal basis replacing £,. i

‘These preliminary concepts.will now be applied to the solution of an infinite

system of linedir equations. “Let the g{vén system be

'Q
!
1]

W

© . . .
. 2 %% T i=1,2, s ' ~an

in matrix. solution

o AX=¢C, o ' B | (12

o. 1 R . . L. R . ol .
§-54 ) Let o represent the vector formed by the complex conjugate of elements 1in the n*h e
o . ) c " row of ‘the matrix A. ’ ] §
-9 ) . Y
G ) - N . 03 ’ .
. 1 %y —'(aﬁ.m o Gpyo 0T Gppy orere) . ) (13) o
| » : | :
: ;% Denoteﬂbv 7y the. set with basis {C&i, Op, .o > %5 OGpy ™ }and deriote by ¥, the . -
LU O - . ' : o
eoc ?&4 set ‘with bas;18 {ai sy *7% vy 0 n=1-? 'an+1» st 0L . The bet 7 is the sane as i}-.'
Ao 2 ' : EN
? Y w11:h . removed Let.jo. be the perpendlcular vector -of %, _with respe"t to Ve -2
oy . < N. B
BE : C -
4 ] THEOREM If ¢, lies in ¥, for no value of .n (Tinear independernce ‘of roys), and e
: t‘% - il g, it 0",,9 - o o satisfy (3), the egs. (11) heve a solutidn if A4
O ' ’ ' o f L
k4 ‘ M - ) - _[‘_—:::';
N 4 ’ ® |c ‘l" . 1
’j of o 2 U < ifﬁ"}
P ; n=1 || 2 5
. HegH e Yo
. . e
.} -t
<y p_
' ) o

converges, and the solution is given by

ey © ) \ .
n . . .
Telr |

“Jf e e

>

" g

In matrix notatior the o, , where

(15)

o e ey
OGae S X
.

K = r r v 000 ve 6099, . .
od Pr ( n1’ n2° * " nn? s : . . _ . .
» . : . |
7 A \ - < ¢ |1 =
._; - 1%
’ =
Tod -
g N B
’ 4
F-

o

17 ' : -
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and T' denotes the transpose operation, then we can write
X =BC,

\-av,here B setves as a left inverse for the matrix 4 in (12).
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